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Eq. (52) represents a forcing at a grid point (/,J, K), and the 3 X 3 matrix in the right-hand side is a minimum
sub-matrix to compose a full matrix for the three-dimensional space. For the sub-matrix £, the satisfaction of
£ = & can be easily confirmed. If the full matrix is composed of this minimum sub-matrix, the forcing strategy
conserves the order of the temporal accuracy. We show next a forcing strategy decreasing the accuracy. The
example is shown as

U;H; IK 0 [4; ly]IAJtK 4, zy]I,J,K 0 u; }K
UEIH«K _ |0 0 [AIIyL,HLK [A;Lzy]l,J+l,K Uik (53)
Ubbax | |00 1 0 Uik
U;l:;-l%—lK 0 0 0 1 ”'1131%?1(

In this equation, one forcing velocity U}’} & 1s used for interpolating the other velocity U}’j},(. We call this an
overlapped forcing, which leads to £ # £°. If the full matrix includes this sub-matrix, the forcing strategy

diminishes the order of the temporal accuracy.
4. Numerical examples
4.1. Flow in a planar channel

4.1.1. Computational setups

Flow in a planar channel is chosen to verify the consistent scheme for the no-slip wall condition. The frac-
tional step method represented by Egs. (29)—(31) is used. LES with the no-slip condition is performed for a
developed turbulent flow, where the Reynolds number, based on the channel half width L and the bulk veloc-
ity u,,, is approximately 5 x 10*. Smagorinsky model is used with van Driest damping function. The Reynolds
number, based on the friction velocity u7 and the channel half width L, is 180.

The computational domain for planar channel is shown in Fig. 6. As shown in Fig. 6a, the channel wall is
represented by the solid objects and the wall is inclined to the computational grid system O — xyz. To explain
computational results for the inclined channel, the coordinate system O — x’y’z with the x’-axis in the main-
stream direction and the y’-axis in the wall normal direction is introduced. The main flow is maintained by a
mean pressure gradient in the x’-direction. As shown in Fig. 6b, the inclination of the wall is set at approx-
imately 6 = 0°, 5°, 10° and 20° so that the wall locates on the cell vertices. This setup allows the periodical
boundary condition for the mainstream and has benefits for spatial average in turbulent flow calculations
and for checking directly the computed velocity on the grid point.

4.1.2. Aligned channel

In order to compare the results between the immersed boundary method and the body fitted method with
the same grid arrangement, the walls are located on the Cartesian grid line by setting 0 =0° as shown
in Fig. 6b. This setup enables us to confirm the realizability of the wall condition shown in Table 1. In this
computation, only the coefficients Aui[zy and A,fly are used in Eq. (25). Since Alfly :Afvly , the extra terms
explained in the Section 3.2 are canceled in a laminar flow because of v;,.1x = v;,x = 0. Moreover, since
(1+ A4 —A4) /A" = 4(-d’ = 0), they are canceled in a turbulent flow if the asymptotical behavior
(v1s41x = 4vrsx) 1s reproduced. The satisfaction of divu=0 and u-n=0 is thus an evidence for that of
u x n =0, and therefore the satisfaction of the no-slip condition can be checked although the streamwise com-
ponent u is not located on the wall.

First, LES of a fully developed turbulent flow is performed to verify the availability of the two-points forc-
ing explained in the Section 2.2. No wall condition for the pressure equation is given as a preliminary step
(corresponding to Case-B stated in the Section 3.1). After the flow reaches a fully developed state, 512 flow
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Fig. 6. The computational domain for planar channel: (a) grid and channel and (b) setups of wall inclination.

fields are averaged during 5¢°, where ¢* is the dimensionless time normalized by L/uz. The number of grids
used in the fluid region is changed as 32 x 30 x 32, 64 x 60 x 64, 64 x 120 x 64 and 64 x 240 x 64 to investigate
the convergence rate of spatial discrete error. In this regard, the grid number in the y-direction is changed to
investigate the effect of the interpolation for immersed boundary. The successive over relaxation (SOR)
method is used to solve Egs. (29) and (31). The iteration is continued for the error to converge within
1% 1072 for Eq. (29) and 1 x 10 for Eq. (31). The error is defined by

Error = \/Z;VI(X,C — Yk)z/Zj:’:lY,f, (54)

where N is total number of the data; X and Y are the left-hand and right-hand sides of equation, respectively.
Fig. 7 shows the convergence of the error for different forcing methods. The error is defined by Eq. (54), where
X and Yy (k=1,2,...,N,, N,: number of grid points in the y-direction) are the mean axial velocities by the
immersed boundary method (IBM) and the body fitted method (BFM), respectively. The error is evaluated at
each number of grids to eliminate the effect of grid resolution on Smagorinsky model and to emphasize the
difference in the wall treatment. In this figure, the two-points forcing method (2P-Linear) are compared with
the one-point forcing in the fluid region using linear interpolation (1P-Linear) and that using the second-order
Lagrange interpolation (1P-Lagrange). The figure indicates that these three methods are second-order accu-
racy and no significant problem arises. However, as shown in Fig. 8, the divergence free condition is seriously
affected by the forcing method. Here, |divu| is evaluated at the cell closest to the wall using Eq. (8) normalized
by the bulk velocity. The error for the one-point forcing methods (1P-Linear and 1P-Lagrange) does not con-
verge whereas that for the two-points forcing method (2P-Linear) maintains second-order accuracy. The result
indicates that introducing the present two-points forcing method is more practical than developing the inter-
polation order for the one-point forcing.

Next, to verify the consistent scheme explained in Section 2.3, LES by the schemes of Cases A, B and C
explained in Section 3.1 are carried out using 32 x 30 x 32 grids in the fluid region. The values of instantaneous
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Fig. 7. Convergence of the error in mean streamwise velocity for different forcing methods (aligned channel).

velocity and its divergence in a cell adjacent to the wall are shown in Table 2. The arrangement of velocities in
the cell are shown in Fig. 9. In the table, divu is calculated by Eq. (8) as

diva = Ugx —Ursigx |, vrax = Vio-ix  Wisx — Wigk-1

A A 7 ; (55)

where remind that the capital letter indicates a forcing velocity. The result reasonably reproduces the conser-
vation property theoretically predicted in Sections 3.1 and 3.2. Namely, the wall condition is satisfied
(Vij-1x =0) in Cases A and C, but the divergence free condition is unsatisfied (divu # 0) in Case-C. In
Case-B, the divergence free condition is satisfied (divu=0) but the wall condition is unsatisfied
(V1s-1x # 0). Here, the non-zero value of divu for Case-B is caused by the truncation error with the digits
shown in the table. Thus, only Case-A can satisfy both the wall condition and the divergence free condition.

It is noted that the drawback of Cases B and C becomes obvious in the turbulent flow simulation. For
example, the velocity profile for the laminar flow indicates no significant difference among Cases A, B and
C, as shown Fig. 10, and we were not able to find the drawback in the digits like those shown in Table 2.
To observe the detail, the convergence of the error in divergence free condition as a function of the error
in the pressure equation is shown in Fig. 11. The divergence of velocity is normalized by bulk velocity and
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Fig. 8. Convergence of the error in divergence free condition for different forcing methods (aligned channel).
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Table 2
Instantaneous velocity and divergence in the forcing cell (aligned channel, 32 x 30 x 32 grids, the values are normalized by u7 for velocity
and L for length)

Case Uik Uik Vir-1.x UrJ.K Wiik-1 Wik divu

A 3.52975 3.85343 0.00000 —0.00552 0.14868 —0.30224 0.00000

B 4.02783 3.91385 —0.10305 0.06124 0.06600 —0.12346 0.00020

C 3.07369 3.45770 0.00000 0.08751 0.27085 —0.05553 —0.06194
y

Fig. 9. The forcing velocities in the aligned channel.

mean grid spacing 4 = (hxhyhz)l/ ?. The figure shows that the error for Cases A and B converges as the error in
the pressure equation approaches the machine-zero, while that for Case-C does not converge. Remind that the
wall condition is broken in Case-B. In the laminar flow simulation, the drawback of the conventional
immersed boundary method thus appears in the error acceptably small. We should remark that the consis-
tency pointed in this study is important for the turbulence simulation in industry, where using coarse mesh
is sometimes inevitable.

4.1.3. Inclined channel

The flow with the wall inclined to the Cartesian grid system is simulated. The grid number kept in the chan-
nel is 32 x30x 32 for the x, y and z directions, and the total grid number is changed as 32 x40 x 32,
32 x 48 x 32 and 32 x 64 x 32 to simulate 0 = 5°,10° and 20° inclinations, respectively. In this computation,
the coefficients 4; ™, 4>, A" and 4" are used in Eq. (25).
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Fig. 10. Velocity profile (y/u,,) in the laminar flow: comparison with theory (u = 3u,(2Ly — y*)/(2L?)) (aligned channel, 32 x 30 x 32
grids).
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Fig. 11. Error of divergence free condition in the laminar flow (aligned channel, 32 x 30 x 32 grids).
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Fig. 12. Velocity vectors (uy,u,) with uniform length in the laminar flow for 6 = (a) 5°, (b) 10° and (c) 20° (inclined channel, immersed
boundary method, 32 x 48 x 32 grids, plotted on every grid point).

First, to compare with the theory, the laminar flow is simulated for the inclination of 6 = 5°,10° and 20°.
The velocity vector and profile obtained by the present immersed boundary method are shown in Figs. 12 and
13. In Fig. 12, the vector is indicated with a uniform length independently of its value, to highlight the velocity
calculated in near-wall region. In Fig. 13, velocity profiles at the inlet, the outlet and the midpoint (/ =1, 32
and 16) all agree well with the theory. In Figs. 14 and 15, the results by the stair-steps approximation, where
velocities are set as zero in the cell nearest to the wall, are shown. The flow near the wall is disturbed and the
flow rate in the channel is decreased. The present immersed boundary method is advantageous for represent-
ing the wall inclined to the Cartesian grid system.

Next, to investigate the temporal accuracy of the present scheme, LES of a fully developed turbulent flow is
performed. The inclination of § = 10° is chosen because both overlapped forcing and non-overlapped forcing
are included. The arrangement of velocities in the cell are shown in Fig. 16. The forcing velocities V;, and
Vi1, are overlapped and non-overlapped, respectively. The forcing velocity V', is interpolated using vy 41
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Fig. 13. Velocity profile (uy/u,) in the laminar flow: comparison with theory (u = 3u,,(2Ly' — »*)/(2L*)) (inclined channel, immersed

boundary method, 32 x 48 x 32 grids).
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Fig. 14. Velocity vectors (uy,u,) with uniform length in the laminar flow for 0 = (a) 5°, (b) 10° and (c) 20° (inclined channel, stair-step

approximation, 32 x 48 x 32 grids, plotted on every grid point).

in the y-direction and V', ; in the x-direction whereas the forcing velocity V', , is interpolated using v, 41

only in the y-direction.

Simulations are performed for several 4z, and 1000 velocities are averaged during 107* after the flow is
developed. The iteration in the SOR method for Eq. (29) and Eq. (31) is continued for the error defined by
Eq. (54) to converge within 1 x 107°. The convergence to the divergence free condition are therefore main-
tained independently of Az. As discussed in the Section 3.2, the divergence free condition is satisfied in the cell
(I+1,J+ 1) but the cell (1,J + 1) because the former includes only one forcing velocity whereas the latter does

two forcing velocities in different coordinate directions. Actually, in these simulations, the divergence of veloc-
ity [divu],,, ,,, and [divu], . |, normalized by u7 and P, is approximately 10~* and 10™", respectively.
L, and L, errors are determined from a reference mean velocity field obtained at a minimum time spacing
At =1.25x10"*¢*, where the Courant number based on the fluctuating velocity and the mean grid spacing is
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Fig. 17. Temporal convergence of the L., error (L-inf) for the overlapped forcing (OV) and the non-overlapped forcing (NOV) velocities
and L, error (L-2) for the streamwise velocity distribution (inclined channel, 32 x 48 x 32 grids).
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The computational domain is shown in Fig. 18. The main flow is maintained by a mean pressure gradient in
the x-direction. In this computational domain, the coefficients 4>, 4., A" and 4 * are used in Eq. (25).
Hereinafter, the distance from the wall is defined by Y= D/2 —r. "The result of LES is compared with that of
DNS [15]. Smagorinsky model is used with van Driest damping function. The Reynolds number Re, based on
the friction velocity u7 and the pipe diameter D, is 360. After the flow is developed, 800 flow fields are averaged
during 4%, where ¢ is the dimensionless time normalized by D/us. Here, D = 0.9375P. The number of grids
used in the whole domain is changed as 64 x 64 x 64, 64 x 128 x 128 and 128 x 128 x 128 to show the conver-
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Fig. 23. RMS of velocity fluctuation ( uj /ur) in the turbulent flow (circular pipe, Rez = 360).

a T ‘b

Fig. 24. The configuration of the rod bundle: (a) the computational domain and a part of grids; (b) the configuration of spacer.
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gence of spatial discrete error. The iteration in the SOR method for Egs. (32) and (34) is continued for the
error defined by Eq. (54) to converge within 1x 107>,

The mean streamwise velocity obtained by the LES is shown in Fig. 19. An azimuthal dependence appears
between 0° and 45° for 64 x 64 x 64, and it disappears for 64 x 128 x 128 and 128 x 128 x 128. To consider this,
the result of the laminar flow simulation for this geometry is shown in Fig. 20. In this figure, the results for the
schemes Case A, B and C, explained in Section 3.1, are shown and each of them is compared between 0° and
45°. The difference between 0° and 45° is insignificant independently of those schemes. As discussed for the
planar channel in Section 4.1.2, the drawback of Case B and C was unapparent in the laminar flow because
of no velocity fluctuation, and so is for this geometry. Since the wall condition is simulated thus reasonably,
the azimuthal dependence in Fig. 19 is therefore caused by an asymmetry of the turbulent stresses, which are
sensitive to the computational grid resolution. This is supported by the result for root mean square (RMS) of
velocity fluctuation shown in Figs. 21-23. The tendency has appeared straightforward in the pipe geometry
because of its complete axisymmetry. In a general complex configuration however, specifying the tendency
is difficult and then it will cause a numerical uncertainty. Checking the grid resolution systematically is always
important in spite of the coordinate system. The Cartesian coordinate has a benefit for systematically chang-
ing the grid resolution.
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4.3. Flow in a nuclear rod-bundle

The present immersed boundary method is applied to a complex three-dimensional geometry of a nuclear
rod-bundle. The fractional step method represented by Eqs. (29)—(31) is used. LES with the no-slip condition
is performed for a developed turbulent flow, where the Reynolds number, based on the rod pitch P and the
bulk velocity u,,, is approximately 4 x 10°.

The rod-bundle is equipped with spacers designed to enhance heat transfer in a nuclear reactor core. Fig. 24
indicates the configuration of the rod-bundle by showing a typical part with a spacer. The reactor core is about
8 times the part in the length direction and 30 times that in the lateral direction. To simulate the flow in the
reactor core, periodic boundary condition is given in the every coordinate direction to the computational
domain shown in Fig. 24a. Mixing-vanes attached at the spacer, as shown in Fig. 24b, produces lateral flows
by distorting the mainstream parallel to the bundled rods. Generating a body fitted structured grid for this
configuration is difficult because the unit channel surrounded by 4 rods has a singular point in the channel
center as well as the geometrical complexity of the spacer with the mixing-vanes. The rod-bundle geometry
is therefore one of the best examples where the immersed boundary method is useful.

In this computation, the coefficients in Eq. (25) are all used. The configuration includes a corner of straps
and a thin solid of the mixing-vane. Even if the corner locates within a cell, without changing the forcing algo-
rithm the forcing velocity is given at the staggered points, and then the corner is approximated as a slope inter-
secting the cell. On the other hand, if the thin solid is within a cell, the forcing inside the body region is omitted
to avoid disturbing the velocity field in the opposite.

The Reynolds number, based on the rod pitch P and the friction velocity averaged in the unit channel ur, is
580. A one equation dynamic sub-grid scale model [16] is used. The number of grids used in the whole domain

Fig. 26. Lateral flows (v, w) downstream from the spacers: (a) swirling flow and (b) crossing flow at x = 6.4P, 7.5P, 8.6P, 9.7P and 10.9P
(plotted on every 8th grid point).
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is 512 x 256 x 256 for x, y and z direction. This grid number is large enough for the two-points forcing inside
the mixing-vane. The time increment is 0.00017*, where ¢* is the dimensionless time normalized by P/u;. The
SOR method for Egs. (29) and (31) is carried out within 50 iterations, and then the error defined by Eq. (54) is
confirmed to be approximately 10~°. The computational result for the drag coefficient has been quantitatively
verified in Ref. [17].

After the flow is developed, an instantaneous velocity field is picked up and shown in Fig. 25. Fig. 25a and b
shows a separation above the mixing-vane containing large-scale fluctuation and a flow developing spatially
along the strap after it is divided. The result suggests that the present method is applicable to such complex
flows. Fig. 25¢ and d indicates that the velocity field around the mixing-vane, which is inclined from the coor-
dinate axis, is captured reasonably by the present immersed boundary method. In Fig. 25d, the interflow from
above and below the mixing-vane is reasonably simulated. The mixing-vane is very close to the rod surface,
and then generating body fitted grid is difficult.

The lateral flows in the downstream of the spacer are shown in Fig. 26. The swirling flow shown in Fig. 26a
is produced by the mixing-vane arrangement that has already shown in Fig. 24. On the other hand, as shown
in Fig. 26b, a different mixing-vane arrangement can produce the cross flow to enhance the mixing between
channels. The decay of these lateral flows has different mechanism [18], and it is important for flow control
in the rod-bundle. In these computations, the mixing-vane arrangement is easily changed in the program
by shuffling the interpolation coefficients for a mixing-vane.

5. Conclusion

A consistent scheme for immersed boundary method was developed to simulate the desired wall velocities
precisely. The pressure field must maintain the consistency for the forcing velocity to represent the wall that
does not coincide with the computational grid. For that purpose, a new wall condition for the pressure equa-
tion was introduced to equate the pressure gradient for the forcing velocity with that for the velocity used in
the interpolation. This wall condition was incorporated into the velocity correction method and the pressure
equation to compose the consistent scheme.

The conservation of wall condition in the present scheme was demonstrated theoretically. The momentum
and energy conservations in the present scheme depended on the mass conservation. The present scheme was
demonstrated to fulfill the mass conservation under the wall condition assured. These theoretical predictions
were successfully verified by LES performed for plane channels aligned and inclined to the grid line.

With a view to unsteady turbulence simulation, temporal accuracy was analyzed using a generalized block
LU decomposition. The result predicted that the temporal accuracy was decreased when one forcing velocity
was used in the interpolation for another forcing. The LES result for the inclined channel indicated that the
temporal accuracy was certainly decreased, and that the effect was however local at the forcing point and insig-
nificant for global velocity field. This result is hopeful for the actual applications, where such overlapped forc-
ing is inevitable.

The present scheme was successfully applied to LES of turbulent flow for complex geometries in Cartesian
grid system. First, LES for a circular pipe was performed and the result was compared well with a DNS. This
suggested that the present method was applicable to accurate unsteady turbulence simulation. Next, LES was
performed for a nuclear rod-bundle that had complex three-dimensional configuration. The present immersed
boundary method was advantageous for rearranging the configuration to optimize the flow control.

This study focused on the numerical scheme rather than the interpolation technique to improve the accu-
racy of the immersed boundary method. The present scheme was validated by both theoretical and numerical
demonstrations. This validation improves the reliability and applicability of CFD on Cartesian grid system for
the use of industrial interest, namely high Reynolds number flows in complex geometries.
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